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Strongly correlated amorphous solids are a class of glass formers whose interparticle potential admits an
approximate inverse power-law form in a relevant range of interparticle distances. We study the steady-state
plastic flow of such systems, first in the athermal quasistatic limit and second at finite temperatures and strain
rates. In all cases we demonstrate the usefulness of scaling concepts to reduce the data to universal scaling
functions where the scaling exponents are determined a priori from the interparticle potential. In particular we
show that the steady plastic flow at finite temperatures with efficient heat extraction is uniquely characterized
by two scaled variables; equivalently, the steady-state displays an equation of state that relates one scaled
variable to the other two. We discuss the range of applicability of the scaling theory, and the connection to
density scaling in supercooled liquid dynamics. We explain that the description of transient states calls for
additional state variables whose identity is still far from obvious.
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I. INTRODUCTION

The equations of fluid mechanics appear to provide an
adequate description for the flow of liquids for an extremely
wide range of boundary conditions and external forcing. A
similarly successful theory is still lacking for the description
of elastoplastic dynamics in amorphous solids which form as
the result of the glass transition. While being essentially “fro-
zen liquids,” amorphous solids differ from regular liquids in
having a yield strength �s, a material parameter which de-
pends on the density, temperature, etc, which is the maximal
value of the internal stress that the material can support by
elastic forces. Regular liquids cannot support any amount of
stress without flowing. When the stress exceeds the yield
strength the material begins to respond plastically, and under
a given external shear rate can develop a steady-state plastic
flow with a mean “flow stress” ��. The analog of the Navier-
Stokes equations which can describe the whole spectrum of
elastoplastic responses in terms of macroscopic variables is
not known yet, and their derivation is the subject of much
current research �1–9� with significant amount of debate. In
this paper we focus attention on the steady-state plastic flow
which is obtained under the action of a constant external
strain rate. We will argue below that the characterization of
such a state is considerably simpler than the full description
of transient states, the latter call for a larger number of mac-
roscopic variables whose nature is not obvious and the con-
stitutive relations between them are not known. For the
steady plastic flow state we can make progress and determine
what are the state variables that determine the state uniquely.

To simplify things further we limit our attention at present
to materials whose interparticle potential can be approxi-
mated, for the range of interparticle distances of relevance,
by an inverse power-law potential. This same class of mate-
rials and the interesting scaling properties that they exhibit
attracted considerable interest in the context of the dynamics
of supercooled liquids, first experimentally �13–16� and then
theoretically �17–20�. In the context of the mechanical prop-
erties of amorphous solids we believe that the first example
of using the special scaling properties of these materials ap-
peared in �3� where focus was put on the athermal limit and
quasistatic strain. In this paper we explore further the quasi-

static limit, and then extend the discussion to systems at
finite temperatures and finite strain rates. The discussion cul-
minates with finding which are the minimal number of res-
caled state variables that determine uniquely the steady plas-
tic flow in such materials. Any general theory that attempts
to provide a complete description of elastoplasticity in amor-
phous solids should reduce, in the steady flow state of mate-
rials of the present class, to a theory that contains these and
only these variables.

The structure of the paper is as follows: in Sec. II we
introduce the systems under study, and explain how they are
simulated both in the athermal quasistatic limit and at finite
temperatures and strain rates. In Sec. III we explain the spe-
cial scaling properties that these systems possess, and predict
theoretically what is expected in the steady plastic flow state.
This is the central part of the paper. We then provide detailed
presentations of simulation results and demonstrate how they
compare to the predictions of the scaling theory. We discuss
analytic properties of the scaling function, and demonstrate
the conditions under which the scaling breaks down. In Sec.
IV we discuss the consequences of our thinking to super-
cooled liquids, and propose that the scaling function used in
the literature in this context are incomplete. Sec. V summa-
rizes the findings, and provides a discussion of the road
ahead, especially in terms of extensions to transient states.

II. SYSTEMS AND METHODS OF SIMULATION

A. System Definitions

In this work we employ two-dimensional polydisperse
systems of point particles of equal mass m, interacting via
two qualitatively different pairwise potentials. Each particle i
is assigned an interaction parameter �i from a normal distri-
bution with mean ��i�=1. The variance is governed by the

polydispersity parameter �=15% where �2=
���i−����2�

���2 . With
the definition �ij =

1
2 ��i+� j� the first potential UR�rij� is

purely repulsive, of which the shape is characterized by thei-
nterger k:
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We chose B0=0.2 for all systems discussed, and vary the
integer k in the following. This pairwise potential is con-
structed such as to minimize computation time, and is
smooth up to second derivative, which is required for mini-
mization procedures.

The second pairwise potential UA�rij� reads

UA�rij� = �Ũ�rij� , r � r���ij�

Û�rij� , r���ij� � r � rc��ij�

0, r � rc��ij�
� �2�

with Ũ�rij�=���
�ij

rij
�k− �

�ij

rij
�6−1 /4�; k=12, r�=21/6�ij, and rc

=1.36�ij. The attractive part Û�r� is glued smoothly to the

repulsive part. We choose Û�r�= �
2 P�

r−r0

rc−r0
� where P�x�

=i=0
5 Aix

i and the coefficients Ai �see Table I� are chosen
such that the potential is smooth up to second derivative.
These pairwise potentials are displayed in Fig. 1 for the cases
of interest. Below the units of length, energy, mass, and tem-
perature are ����i�, �, m, and � /kB where kB is Boltzmann’s
constant. The time units 	� are accordingly 	�=�m�2 /�.
From here and in the following we denote the density as 
̃
� N

V , and define the dimensionless density 
��d
̃. Also, we
will refer to the dimensionless density as just the density, for
the sake of brevity.

Initial conditions for all the simulations, for both methods
described in the next subsection, were obtained by instanta-
neous quenching of random, high-temperature configura-
tions; this explains the apparent noise and absence of stress
peaks in the transients. Furthermore, it is important to note
that due to finite system sizes, the initial value of the stress of
the quenched configurations in some experiments is nonzero;
this is however irrelevant for steady-state statistics.

B. Methods

The work presented here is based on two types of simu-
lational methods. The first type corresponds to the athermal

quasistatic �AQS� limit T→0 and �̇→0, where �̇ is the
strain rate. AQS methods have been extensively used re-
cently �4–9� as a tool for investigating plasticity in amor-
phous systems. The order in which the limits T→0, �̇→0
are taken is important, since one expects that at any finite
temperature the stress in the system can thermally relax
given long enough time �10� �or small enough strain rates�,
hence the limit T→0 should be taken prior to the �̇→0
limit. According to AQS methods, starting from a completely
quenched configuration of the system, we apply an affine
simple shear transformation to each particle i in our shear
cell, according to

rix → rix + riy�� ,

riy → riy , �3�

in addition to imposing Lees-Edwards boundary conditions
�11�. The strain increment �� plays a role analogous to the
integration step in standard molecular dynamics �MD� simu-
lations. We choose for the discussed systems ��=10−4, which
while not sufficiently small for extracting exact statistics of
plastic flow events as done in �8�, it is, however, sufficiently
small for the analysis of the steady-state properties and mean
values. The affine transformation Eq. �3� is then followed by
the minimization �12� of the potential energy under the con-
straints imposed by the strain increment and the periodic
boundary conditions. We chose the termination threshold of
the minimizations to be ��U�2 /N2=10−18.

TABLE I. The coefficients in P�x�=i=0
5 Aix

i, see text.

A0 −1.0

A1 0.0

A2 0.806111631332424

A3 7.581665106002721

A4 −12.581665106002717

A5 5.193888368667571
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FIG. 1. �Color online� The different pairwise potentials dis-
cussed in this work.
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The second simulation method employs the so-called
Sllod equations of motion �11�. For our constant strain rate
two-dimensional systems, they read

ṙix = pix/m + �̇riy ,

ṙiy = piy/m ,

ṗix = f ix − �̇piy ,

ṗiy = f iy .

We use a leapfrog integration scheme for the above equa-
tions, and keep the temperature constant by employing the
Berendsen thermostat �11�, measuring the instantaneous tem-
perature with respect to a homogeneous shear flow. The in-
tegration time steps were varied between �t=0.007 and �t
=0.001, depending on density, such that numerical stability
was maintained for all densities simulated. The time scale 	T
for heat extraction �11� was chosen such that rate of heat
generation is smaller than the rate of heat extraction. For the
lowest densities this was chosen to be 	T�10	�.

III. SCALING THEORY

The discussion of the relaxation properties of glass form-
ers in the supercooled regime �13–20� and of the mechanical
properties of the amorphous solids �3� simplifies significantly
when the interparticle potential assumes an effective inverse
power law from in the relevant range of interparticle dis-
tances. As an example consider the potential Eq. �1� in the
density range 
� �1,1.6�. Since in d dimensions the charac-
teristic interparticle distance r0 scales such as

r0 �
�


1/d , �4�

the range of densities employed here is equivalent to a range
of r0 /�� �
max

−1/d ,
min
−1/d�. We find that in this range, to a very

good approximation,

1

rd−1

�UR�r�
�r

�
�

�d	 r

�

−d

. �5�

In two dimensions =4.80 for k=8 and =5.87 for k=10,
see Fig. 2.

In the following discussion we define the flow stress �� to
be the steady-state value of the stress under constant external
strain rate. In general, the flow stress is a function of a set of
state variables, which specify the conditions in which the
experiments are carried out. For the systems and experiments
discussed in this work, the flow stress depends on the density

, the temperature T, and the strain rate �̇. In addition, one
can expect also a dependence on the heat extraction rate 	T

−1.
We choose to exclude the latter from the present discussion,
and we do so by choosing the rate of heat extraction to be
much larger than the rate of heat production. So, we propose
at this point that ��=���T ,
 , �̇�. The yield stress �Y�
� is
defined as the steady-state value of the stress under the limits
T→0 and �̇→0 �see discussion regarding these limits in
Sec. III C�, i.e.,

�Y � ���
,T → 0,�̇ → 0� . �6�

A. Scaling in the athermal quasistatic limit

In the athermal quasistatic limit the only parameter left is
the density; consideration of the temperature and strain rate
effects will be taken up in the next subsection. Denote the
distribution of interparticle distances as p�r�; then the mean
interparticle distance is r0�
���rp�r ;
�dr. Note that this
probability distribution only accounts for distances which are
relevant in terms of the interaction, namely, for rij

��ij�
k

B0
�1/�k+2�. If p�r� is sufficiently sharply peaked around

r0, we can write

�r
�UR

�r
� � r0� �UR

�r
�

r0

� �	 r0

�

d�1−�

� �
−1. �7�

From here we predict that for our systems with short-range
forces the scaling of the yield stress should be

�Y � N

r0� �UR

�r
�

r0

V
� �

�d 

. �8�

In the athermal quasistatic limit the shear modulus �, which
is measured as the average of �� /�� over the elastic
branches, must obey the same scaling

� � �

�d 

. �9�

These scaling laws lead to the expectation that replotting
stress-strain curves in terms of rescaled variable � /
 should
result in complete data collapse. Indeed, our simulations vin-
dicate this expectation. In Fig. 3 we present the raw stress-
strain curves in the athermal quasistatic limit using seven
different values of the density. For each density we simulated
20 independent runs of N=4096 particles, using the pairwise
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FIG. 2. �Color online� r−1 �U�r�
�r in the range of r0 /�

� �
max
−1/2 ,
min

−1/2� for k=8 in green asterisks, and for k=10 in blue
circles. The line through the points represents the scaling laws Eq.
�5�
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potential Eq. �1� and two choices of the integers k=8 and k
=10. Figure 4 demonstrates the superb data collapse for the
scaled variable. The insets are a direct test of the scaling laws
Eqs. �8� and �9�.

B. Scaling theory with temperature and external strain rate

Once we perform measurements at finite temperatures and
external strain rates the scaling considerations must incorpo-
rate temporal and energy scales. The typical elastic energy
density in the steady-state plastic flow should scale like
�Y

2 /�. Accordingly, the intensive energetic contribution to
barriers �G �that govern thermal activation� scales with the
density according to

��G� �
V

�Y
2

�

N
� �
−1. �10�

Note that this is the “density scaling” proposed in �13–20� in
the context of the dynamics of supercooled liquids. For the
present purposes we need to explore further scaling relations;
we estimate now the density scaling of the typical time scale
	0 with respect to which all the rates in the theory should be
compared. We begin with the speed of sound cs; using Eq.
�9� we write

cs =��



� �

	�

�−1�/2. �11�

We can now define the time scale 	0�r0 /cs; using Eqs. �4�
and �11� we obtain

	0 � 	�
−�d−d+2�/�2d�. �12�

Using Eq. �10� we conclude that the effect of temperature on
the dynamics in the steady-state must be invariant once the
temperature is rescaled by 
−1. On the other hand the exter-
nal strain rate �̇ should leave the system invariant once res-
caled by 
−�d−d+2�/�2d� due to Eq. �12�. Putting together all
these we finally propose the expected scaling function form
for the flow stress ��:

���T,
,�̇� = �

�d 

S	 T

�
−1 ,
�̇

	�
−1
�d−d+2�/�2d�
 . �13�

This is the central theoretical result of this section. We stress
that we chose to favor the flow stress and wrote it in terms of
the scaling function of the other two dimensionless variables.
We could equivalently choose any of the other two variables
to be represented in an analog way in terms of two dimen-
sionless variables. This scaling function form is in fact an
equation of state for the steady plastic flow.

For d=2 this general result assumes the form

���T,
,�̇� = �

�2 

S	 T

�
−1 ,
�̇

	�
−1
/2
 . �14�

To demonstrate the high degree of precision with which the
scaling theory is obeyed we performed simulations at finite
temperature and strain rate �see methods section� in which
we prepared 10 independent systems �for each density� of
N=10000 particles at the densities 
=1.0, 1.1, 1.2, 1.3, and
1.4. Defining the two dimensionless variable x� T

�
−1 and y
� �̇

	�
−1
/2 , we fix the value y0=1.6�10−5 for all densities, and

simulated all the five densities for the values x=0.001, 0.01,
0.1, and 0.2. The results are displayed in Fig. 5. We see the
excellent data collapse and also the quality of the scaling
laws for the flow stress; the slopes of the lines in the right
panels are those predicted theoretically in Eq. �13�, i.e., ��

� �

�2 
.
We now test the quality of the prediction of the existence

of the scaling function S�x ,y�. To this aim we fixed a value
of 
=1.15 and the same y0=1.6�10−5, and simulated the
entire range of x values for which S�x ,y� exists. The result is
shown in Fig. 6, in addition to the data obtained for all the
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FIG. 3. �Color online� Stress-strain curves averaged over 20
independent runs for an athermal system with N=4096, k=8 �left
panel� and k=10 �right panel� as a function of the density, with the
density increasing from bottom to top.
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other densities and x values shown in Fig. 5. The excellent
data collapse is quite apparent. It is noteworthy that at low
temperatures the function reaches smoothly, albeit with a
very high gradient, precisely the athermal quasistatic limit
that was studied in the previous subsection. The high gradi-
ent as T→0 in a similar, experimentally obtained function,
was interpreted in �21� as resulting from quantum-
mechanical effects. Obviously in our purely classical simu-
lations there are no quantum effects and it remains very in-
teresting to unfathom the origin of the very fast change in the

flow stress over a very short temperature interval.
To emphasize the relevance of the temporal scaling we

simulated steady flow states at different external strain rates
but at the same x values. The result are shown in Fig. 7. We
see that as the temperature increases, the relative sensitivity
of the flow stress to changes in the the strain rate increases
appreciably. Note that the value of y0=1.6�10−5 for which
the data collapse was demonstrated is well within the range
of high sensitivity to changes in the strain rate. In other
words, without rescaling the strain rate properly there is no
hope for data collapse. Further analytic properties of the scal-
ing function are discussed in the next subsection.

C. Analytic properties of the scaling function

The entire physics of the steady flow state for this class of
systems is encoded in the scaling function S�x ,y�. It is there-
fore very challenging to derive the form of this functions
from first principles. We are not yet in a position to do so; at
this point we can only present the analytic properties of this
function as a preparation for future discussions.

First, it is noteworthy that the limits limx→0 limy→0 and
limy→0 limx→0 do not commute. We expect that

lim
x→0

lim
y→0

S�x,y� = 0, �15�

simply because at any finite temperature, given enough time
to relax the stress, the flow stress must vanish �10�. On the
other hand

lim
y→0

lim
x→0

S�x,y� = �Y/
, �16�

as can be seen directly from Fig. 6.
Second, in the athermal limit x→0 the flow stress loses

its dependence on the external strain rate for sufficiently
small values of y,

lim
y→0

lim
x→0

�S�x,y�
�y

= 0. �17�

This property can be seen directly in Fig. 7. The physical
reason for this property is that without substantial thermal
activation the physics becomes insensitive to external time

0

0.1

0.2

0.3

σ ρ
ν

10
0

σ
∞

0

0.1

0.2

0.3

σ ρ
ν

10
0

σ
∞

0

0.05

0.1

0.15

0.2

σ ρ
ν

10
−0.7

10
−0.3

10
0.1

σ
∞

0 0.5 1 1.5

0

0.05

0.1

0.15

γ

σ ρ
ν

10
0

10
0.1

10
−1

ρ

σ
∞

FIG. 5. �Color online� Left panels: stress normalized by 
 vs
strain for the x values x=0.001, x=0.01, x=0.1, and x=0.2, increas-
ing from top to bottom. Right panels: log-log plots of the steady-
state flow stress as a function of density, for the same corresponding
values of x.

0 0.05 0.1 0.15 0.2 0.25 0.3
0

0.05

0.1

0.15

0.2

0.25

0.3

x = T
�ρν−1

S(
x
;y

0
)

=
λ

2 �
σ
∞

(T
,ρ

,γ̇
)

ρ
ν

ρ = 1.15
ρ = 1
ρ = 1.1
ρ = 1.2
ρ = 1.3
ρ = 1.4

AQS limit x → 0, y → 0

FIG. 6. �Color online� The function S�x ;y0�. Data is displayed
for 
=1.15 �blue circles� over a wide range of x= T

�
−1 values, and
for the densities of Fig. 5 over the x values x=0.001, x=0.01, x
=0.1, and x=0.2. The value of y0= �̇

	�
−1
/2 is 1.658�10−5 for all

simulated systems.

y

S
(x

0
;y

)/
S

(x
0
;y

=
2.

5
×

10
−

6
)

2.5 × 10−6 5.0 × 10−6 1.25 × 10−5 2.5 × 10−5

1.0

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4 x0 = 0.005
x0 = 0.05
x0 = 0.152
x0 = 0.227

FIG. 7. �Color online� The scaling function S�x0 ,y� normalized
by the values S�x0 ,y=2.5�10−6�, for various values of y.

SCALING THEORY FOR STEADY-STATE PLASTIC FLOWS … PHYSICAL REVIEW E 80, 026128 �2009�

026128-5



scales. This limit is expected to hold when the external strain
rate is much smaller than the elastic relaxation rate; inter-
plays between high strain rates and the flow stress were in-
vestigated in �22�.

Finally, we observe an inflection point in S�x ,y�, see Fig.
6 around x=0.1, where

� �2S�x,y�
�x2 �

y

= 0. �18�

We conjecture that this inflection point separates a “low-
temperature region” from a “high-temperature region” in
which the elastoplastic physics is not the same. It is possible
that a change from delocalized plastic events to more local-
ized events �8,22� is the fundamental reason for this change,
but further study is necessary to pinpoint this issue in a con-
vincing way.

D. Applicability of the scaling theory

At this point it is appropriate to discuss the general appli-
cability of the scaling approach. It is sufficient to delineate
this applicability in the context of the athermal, quasistatic
limit using systems in which the interparticle potential can-
not be usefully approximated as inverse power laws. In some
model systems, e.g �19�, it has been shown that density scal-
ing of the dynamics of supercooled liquids still holds in spite
of the presence of attractive forces in the potential. Further-
more, the same qualitative density scaling has been applied
to a wide variety of experimental data, with substantial suc-
cess �13–16�. In these experimental systems there are defi-
nitely attractive forces between the particles, and thus the
question of the applicability of the scaling theory is highly
pertinent.

1. Simulations

We have simulated systems with the potential UA�r�, Eq.
�2� in the athermal quasistatic limit. In this potential an at-
tractive branch is added to the repulsive one, see Fig. 1. We
again prepared 20 independent runs for each of the seven
densities 
=1.0, 1.1, 1.2, 1.3, 1.4, 1.5, and 1.6, this time for
systems of N=2500 particles, and collected statistics for the
steady-state stress values �see methods section�, as previ-
ously described.

The raw data of the stress-strain curves is displayed in the
left panel of Fig. 8. In the right upper panel we show what
happens when we try to collapse the data by rescaling the
stress by �Y. Of course the stress-stain curves now all as-
ymptote to the same value, but the curves fail to collapse,
since ��� does not scale in the same way as �Y. Nevertheless,
even in the present case we can have predictive power for
high densities. When the density increases the repulsive part
of the potential Eq. �2� becomes increasingly more relevant,
and the inner power-law r−12 becomes dominant. We there-
fore expect that for higher densities scaling will be regained,
and both �Y and ��� would depend on the density as 
7. The
two lower right panels in Fig. 8 show how well this predic-
tion is realized also in the present case.

2. Constancy of the ratio of the shear modulus
and the yield stress

Another way of flushing out the failure of scaling when
there exist attractive forces is provided by the ratio

� �
�

�Y
. �19�

This is a pure number, which has been claimed to be univer-
sal for a family of metallic glasses �21�. For systems in
which our scaling analysis holds, we have seen that the shear
modulus scales with density in exactly the same manner as
the yield stress �see Eqs. �8� and �9��, hence the number �
should be invariant to density changes, for a given system.
However, when compared across different systems, there is
no a priori reason to expect this number to be universal.
Figure 9 displays the measured values of � for our athermal
quasistatic experiments, for two different repulsive potentials
of the form �1�, using k=8 and k=10, and for the attractive
potential Eq. �2�, with k=12. For the two repulsive poten-
tials, we find from our numerics that this parameter differs
by about 5%, indicating nonuniversality. The lack of univer-
sality is even clearer with the last potential Eq. �2�. It is
apparent that when scaling prevails the value of � is con-
stant up to numerical fluctuations. In the third case, where
scaling fails, � is a strong function of 
 except at higher
densities where scaling behavior is recaptured as explained.
We can therefore conclude that the approximate constancy of
� found in a family of metallic glasses �21�, is not funda-
mental but only an indication of the similarity of the poten-
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tials for this family. In general � can depend on the inter-
particle potential. It is quite clear from considering Eqs.
�7�–�9�, that the coefficients in the scaling laws Eqs. �8� and
�9� may well depend on the exponent k in the repulsive part
of the potential. The ratio of these prefactors, being a pure
number, could be independent of k, and � could be univer-
sal. It appears however that ��� is increasing more with k
than �Y, and therefore � shows a clear increase upon in-
creasing k. At present this must remain an interesting riddle
for future research.

IV. RELATION TO DENSITY SCALING
IN SUPERCOOLED LIQUIDS

The destruction of scaling for low-density systems with
the attractive potential Eq. �2� is in apparent contradiction to
density scaling analysis of relaxation times in supercooled
liquids. As mentioned above, it has been shown in the con-
text of the dynamics of supercooled liquids, both in model
systems and in experiments, that the presence of attractive
forces in the pairwise potentials can still be consistent with
density scaling. In our context of mechanical properties scal-
ing is regained only at high densities; it is desirable to un-
derstand whether there is a qualitative difference between the
influence of attractive forces on mechanical properties, and
the influence of attractive forces on the dynamics of super-
cooled liquids.

The standard way in which density scaling is presented in
the context of the dynamics of supercooled liquids is in the
form �13–16,18,19�

	��T,
� = F	 T


�
 , �20�

where 	� is the �-relaxation time and F�x� is a scaling func-
tion of one rescaled variable; the exponent � corresponds to
−1 in our scaling analysis.

In our opinion this form cannot be exact, and we propose
now an alternative form in light of the analysis presented

above. The form �20� account only for the density scaling of
the free-energy barriers for thermal activation. We have
noted above that on top of this the microscopic time scale 	0,
with respect to which rates are compared, also varies with
density, see Eq. �12� and discussion in Sec. III B.

Write the �-relaxation time in the standard transition-
state-theory form

	��T,
� = 	0e�G�T�/T. �21�

The free-energy barrier �G scales with density as �G
��
−1 �see discussion prior to Eq. �10��; the microscopic
time scale should scale as 	0�	�
−�d−d+2�/�2d�, �see discus-
sion prior to Eq. �12��. Combining these considerations, we
obtain the scaling form

	��T,
� = 	�
−�d−d+2�/�2d�F	 T

�
−1
 . �22�

We believe that this correct form was missed because the
scaling of thermal activation barriers appears in the exponent
of the right-hand side of Eq. �21�, whereas the scaling of the
microscopic time scale is in the prefactor. Nevertheless it is
our suggestion that data should be reanalyzed using the
proper form of the scaling function.

V. SUMMARY AND THE ROAD AHEAD

In this paper we offered some modest inroads into provid-
ing a theory for elastoplastic dynamics. We must admit that a
complete theory of elastoplastic response of amorphous sol-
ids is still out of reach, mainly because of some fundamental
riddles that are highly debated. Our proposition in this paper
is that understanding the steady plastic flow state is first sim-
pler than and second mandatory for achieving a full theory of
elastoplasticity. By focusing on glass formers with simple
effective inverse power-law potentials we achieved a scaling
theory for the steady-state flow stress under constant strain
rate and finite temperatures. We have shown that in the ather-
mal quasistatic limit the yield stress exhibits power-law de-
pendence on the density, as does the shear modulus. It was
then shown that temperature and external strain rate can be
incorporated into the scaling approach by accounting for
thermal activation effects via energy scaling, and rate effects
via temporal scaling. The finite temperature and finite strain
rate theory appears in excellent agreement with the athermal
quasistatic limit when the appropriate limits are taken.

The first task ahead is to provide an understanding from
first principles of the scaling function S�x ,y�. We have dis-
cussed some analytical properties of this scaling function,
some of which offer fascinating riddles for future research.
Probably the most intriguing of these is the inflection point
in S�x ,y�, see Eq. �18�, and the corresponding discussion.
Understanding the origin of this inflection point may shed
light on the possibility of constructing mean field theories of
plasticity at least for steady-states, including the external pa-
rameter regimes for which they might be valid.
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FIG. 9. �Color online� The pure number � as a function of the
density for the three potentials discussed in the text. Note that �
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potential whenever scaling prevails.
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Probably the most important remaining issue is the iden-
tification of additional state variable that are necessary to
describe transient states. It is well known that after straining
in one direction and reaching a steady-state, a change in
straining direction with an angle with respect to the original
direction results in angle-dependent trajectories. This means
that a tensorial order parameter is written into the material
during the steady flow state, and this object does not appear
in our analysis. It must appear however in the transient tra-

jectories. The identification of this tensorial object will call
for additional future work.
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